
Are there things about the Universe that will be forever beyond our grasp? Are there things about the Universe that are ungraspable? Dr. Richard Dawkins
The 24 hour cycle of day and night involves the rising and setting of our sun. And during this cycle, we continuously fall asleep in consciousness, and then awaken. In a similar fashion, there is a 26,000 year cycle that involves the rising and setting of a Grand Central Sun that lies at the center of our galaxy.
Everything is in motion. It’s a law of nature. Nothing is exempt. Our sun is in orbit around a grander sun and it takes 26,000 years to make one revolution around it. At the end of each of these cycles, there is a global spiritual awakening. When the Grand Central Sun sets at the midway point, we all fall in consciousness again. And the last setting of this great sun saw the Fall of Man.
Then those also who have Fallen Asleep in Christ are lost.
I Corinthians 15:18
In a report dated December 13, 2010, scientists at Lockheed Martin’s Solar and Astrophysics Lab in California revealed that an entire hemisphere of our sun erupted early in August of that year. This colossal event has caused one-billion ton clouds of hot gas to billow out into space. NASA is calling it the ‘Great Eruption,’ an event they recorded on video.
The August 1st event really opened our eyes. We see that solar storms can be global events, playing out on scales we scarcely imagined before! Dr. Karel Schrijver
On this side of the center of our galaxy, in our universe of matter, there lies a massive Black Hole. But, on the other side, there is an anti-matter universe of White Light. That universe of Light is our multi-dimensional place of origin. It’s an opening where matter does not exist.
On January 24 of 2012, our sun released a solar flare that traveled to Earth at 1,400 miles per second. This Coronal Mass Ejection was the largest ejection to hit the Earth in seven years. It is the dawning of the Grand Central Sun that is causing our own sun to release these solar flares, which will increase in intensity and regularity as we move further into the year 2012. Soon, we will all be exposed to a type of radiation that Modern Science does not completely understand. We will feel its effects, both in our physical and emotional bodies. And we will see the Aurora Borealis in places, such as Arkansas and Texas in the US.
Ra, the Egyptian Sun god
Humanity is shifting from the limited spectrum of visible light into the invisible spectrum of God’s holy Light. And we are going through a physical evolution and a spiritual evolution in conjunction with this.
Something that doesn’t really interact with anything is changing something that can’t be changed!
Dr. Jere Jenkins
This is indicative of the transition period we are currently in. Where the structure of a diamond is retained if it is placed in a fire, a log of wood will burn down. So all of our Carbon-based cells must be transformed into a Crystaline formation in order for us to withstand the tremendous amount of Light that will soon be streaming into the planet.
In conjunction with this new cycle of solar flares from our sun, there is a change that is occurring in the magnetic field of the Earth, which is hitting its lowest point in thousands of years. The gravitational pull is also being affected. And this has been a contributing factor in the duality on this planet.[iv]
Magnetic energy is polar; Crystalline energy is non-polar, or Zero Point. The shift to Zero Point occurs from the fifth to the twelfth dimension. So the ascension is the expansion of the Earth from the magnetic polarity of the first three dimensions to the Zero Point fields of the higher dimensions, which are Crystalline. The magnetic field began a steady decline two-thousand years ago, with the birth of Christ. But it is now beginning a much more rapid descent toward Zero Point – a place where one Creation collapses and another begins.
To the ancient Egyptians, the Father of Creation is the sun god who is known as both Ra and Re, the correct pronunciation of which is ‘ray.’ To the Christians, the seventh and final day of the week is the holy day of rest, which we call ‘Sunday.’ And Easter ‘Sunday’ is a celebration of the rebirth of the Christ. As above, so below; As below, so above.
Matter flows from place to place, and momentarily comes together to be YOU. Dr. Richard Dawkins
Our obligation to survive and flourish is owed, not just to ourselves, but also to that Cosmos, ancient and vast, from which we spring. Dr. Carl Sagan
Zero Point Energy
In a quantum mechanical system such as the particle in a box or the quantum harmonic oscillator, the lowest possible energy is called zero-point energy.
Zero-point energy is the lowest possible energy that a quantum mechanical physical system may have; it is the energy of its ground state. All quantum mechanical systems undergo fluctuations even in their ground state and have an associated zero-point energy, a consequence of their wave-like nature. The uncertainty principle requires every physical system to have a zero-point energy greater than the minimum of its classical potential well, even at absolute zero. For example, liquid helium does not freeze under atmospheric pressure at any temperature because of its zero-point energy.
The concept of zero-point energy was developed in Germany by Albert Einstein and Otto Stern in 1913, using a formula developed by Max Planck in 1900. The term zero-point energy originates from the German Nullpunktsenergie.
Vacuum energy is the zero-point energy of all the fields in space, which in the Standard Model includes the electromagnetic field, other gauge fields, fermionic fields, and the Higgs field. It is the energy of the vacuum, which in quantum field theory is defined not as empty space but as the ground state of the fields. In cosmology, the vacuum energy is one possible explanation for the cosmological constant. A related term is zero-point field, which is the lowest energy state of a particular field.
Cultural References
In the Justice League Episode, 'Hereafter', Vandal Savage had taken over the world and invented a Zero Point Generator in the boredom of immortality which was used to power a time machine to transport Superman back to the present.
In the movie 'The Incredibles', the villain Syndrome uses a ray that can immobilize an opponent, suspending him in mid-air. Director Brad Bird, speaking in a DVD commentary, says that in searching for a name for the device (or at least a better one than "the Immobi-ray"), he came across and used a reference to "zero-point energy", which Syndrome himself uses to describe his weapon. (Of course, this is simply a cool name rather than a practical application at this time!)
The television show Stargate SG-1 and the spinoff, Stargate Atlantis also makes references to zero-point energy in the form of Zero Point Modules or ZPMs. These ZPMs extract energy from small artificially-created subspaces are used to power the technology of the Ancients, such as the energy shield which protects the city of Atlantis and powering the Stargate with sufficient power to allow travel to the Pegasus Galaxy. The Ancients also attempted to extract zero-point energy directly from their own universe in Project Arcturus.
Another television series called ZERO.POINT is in development that centers around the machinations of a quantum physicist searching for zero-point energy technology and a drifter who wanders in perfect synchronicity.
In Marvel Comic's "Ultimate Secret" issue one, the disguised Captain Mahr-vell has helped humans develop a star drive based on ZPE. He offhandedly remarks that quantum wave fluctuations were discovered to cause inertia, which is the SED Hypothesis (covered here).
In the second season of the television series 'Alias', Sydney Bristow is tasked to retrieve a music box that supposedly contains a formula for zero-point energy.
In '3001: The Final Odyssey,' by Arthur C. Clarke humanity is tapping zero point energy (or vacuum energy as it's called in the book). Human astronomers observed an explosion of a far-away star, and on further investigation found that the detonation started at one of the planets which destabilized the star itself. This event gives the characters nightmares, as it was assumed that some alien race was using zero-point energy and lost control.
ZPE is also a potential energy source of interest to independent researchers outside of mainstream research entities, such as the late Eugene Mallove, and figures into discussions on radio programs such as Coast to Coast AM.
INTRODUCTION
Quantum mechanics predicts the existence of what are usually called ''zero-point'' energies for the strong, the weak and the electromagnetic interactions, where ''zero-point'' refers to the energy of the system at temperature T=0, or the lowest quantized energy level of a quantum mechanical system. Although the term ''zero-point energy'' applies to all three of these interactions in nature, customarily (and hereafter in this article) it is used in reference only to the electromagnetic case.
In conventional quantum physics, the origin of zero-point energy is the Heisenberg uncertainty principle, which states that, for a moving particle such as an electron, the more precisely one measures the position, the less exact the best possible measurement of its momentum (mass times velocity), and vice versa. The least possible uncertainty of position times momentum is specified by Planck's constant, h. A parallel uncertainty exists between measurements involving time and energy (and other so-called conjugate variables in quantum mechanics). This minimum uncertainty is not due to any correctable flaws in measurement, but rather reflects an intrinsic quantum fuzziness in the very nature of energy and matter springing from the wave nature of the various quantum fields. This leads to the concept of zero-point energy.
Zero-point energy is the energy that remains when all other energy is removed from a system. This behaviour is demonstrated by, for example, liquid helium. As the temperature is lowered to absolute zero, helium remains a liquid, rather than freezing to a solid, owing to the irremovable zero-point energy of its atomic motions. (Increasing the pressure to 25 atmospheres will cause helium to freeze.)
A harmonic oscillator is a useful conceptual tool in physics. Classically a harmonic oscillator, such as a mass on a spring, can always be brought to rest. However a quantum harmonic oscillator does not permit this. A residual motion will always remain due to the requirements of the Heisenberg uncertainty principle, resulting in a zero-point energy, equal to 1/2 hf, where f is the oscillation frequency.
Electromagnetic radiation can be pictured as waves flowing through space at the speed of light. The waves are not waves of anything substantive, but are ripples in a state of a theoretically defined field. However these waves do carry energy (and momentum), and each wave has a specific direction, frequency and polarization state. Each wave represents a ''propagating mode of the electromagnetic field.''
Each mode is equivalent to a harmonic oscillator and is thus subject to the Heisenberg uncertainty principle. From this analogy, every mode of the field must have 1/2 hf as its average minimum energy. That is a tiny amount of energy in each mode, but the number of modes is enormous, and indeed increases per unit frequency interval as the square of the frequency. The spectral energy density is determined by the density of modes times the energy per mode and thus increases as the cube of the frequency per unit frequency per unit volume. The product of the tiny energy per mode times the huge spatial density of modes yields a very high theoretical zero-point energy density per cubic centimeter.
From this line of reasoning, quantum physics predicts that all of space must be filled with electromagnetic zero-point fluctuations (also called the zero-point field) creating a universal sea of zero-point energy. The density of this energy depends critically on where in frequency the zero-point fluctuations cease. Since space itself is thought to break up into a kind of quantum foam at a tiny distance scale called the Planck scale (10-33 cm), it is argued that the zero point fluctuations must cease at a corresponding Planck frequency (1043 Hz). If that is the case, the zero-point energy density would be 110 orders of magnitude greater than the radiant energy at the center of the Sun.
How could such an enormous energy not be wildly evident? There is one major difference between zero-point electromagnetic radiation and ordinary electromagnetic radiation. Turning again to the Heisenberg uncertainty principle one finds that the lifetime of a given zero-point photon, viewed as a wave, corresponds to an average distance traveled of only a fraction of its wavelength. Such a wave ''fragment'' is somewhat different than an ordinary plane wave and it is difficult to know how to interpret this.
On the other hand, zero-point energy appears to have been directly measured as current noise in a resistively shunted Josephson junction by Koch, van Harlingen and Clarke up to a frequency of about 0.6 Tz (see Abstract).
Zero Point Energy
In a quantum mechanical system such as the particle in a box or the quantum harmonic oscillator, the lowest possible energy is called zero-point energy.
Zero-point energy is the lowest possible energy that a quantum mechanical physical system may have; it is the energy of its ground state. All quantum mechanical systems undergo fluctuations even in their ground state and have an associated zero-point energy, a consequence of their wave-like nature. The uncertainty principle requires every physical system to have a zero-point energy greater than the minimum of its classical potential well, even at absolute zero. For example, liquid helium does not freeze under atmospheric pressure at any temperature because of its zero-point energy.
The concept of zero-point energy was developed in Germany by Albert Einstein and Otto Stern in 1913, using a formula developed by Max Planck in 1900. The term zero-point energy originates from the German Nullpunktsenergie.
Vacuum energy is the zero-point energy of all the fields in space, which in the Standard Model includes the electromagnetic field, other gauge fields, fermionic fields, and the Higgs field. It is the energy of the vacuum, which in quantum field theory is defined not as empty space but as the ground state of the fields. In cosmology, the vacuum energy is one possible explanation for the cosmological constant. A related term is zero-point field, which is the lowest energy state of a particular field.
Cultural References
In the Justice League Episode, 'Hereafter', Vandal Savage had taken over the world and invented a Zero Point Generator in the boredom of immortality which was used to power a time machine to transport Superman back to the present.
In the movie 'The Incredibles', the villain Syndrome uses a ray that can immobilize an opponent, suspending him in mid-air. Director Brad Bird, speaking in a DVD commentary, says that in searching for a name for the device (or at least a better one than "the Immobi-ray"), he came across and used a reference to "zero-point energy", which Syndrome himself uses to describe his weapon. (Of course, this is simply a cool name rather than a practical application at this time!)
The television show Stargate SG-1 and the spinoff, Stargate Atlantis also makes references to zero-point energy in the form of Zero Point Modules or ZPMs. These ZPMs extract energy from small artificially-created subspaces are used to power the technology of the Ancients, such as the energy shield which protects the city of Atlantis and powering the Stargate with sufficient power to allow travel to the Pegasus Galaxy. The Ancients also attempted to extract zero-point energy directly from their own universe in Project Arcturus.
Another television series called ZERO.POINT is in development that centers around the machinations of a quantum physicist searching for zero-point energy technology and a drifter who wanders in perfect synchronicity.
In Marvel Comic's "Ultimate Secret" issue one, the disguised Captain Mahr-vell has helped humans develop a star drive based on ZPE. He offhandedly remarks that quantum wave fluctuations were discovered to cause inertia, which is the SED Hypothesis (covered here).
In the second season of the television series 'Alias', Sydney Bristow is tasked to retrieve a music box that supposedly contains a formula for zero-point energy.
In '3001: The Final Odyssey,' by Arthur C. Clarke humanity is tapping zero point energy (or vacuum energy as it's called in the book). Human astronomers observed an explosion of a far-away star, and on further investigation found that the detonation started at one of the planets which destabilized the star itself. This event gives the characters nightmares, as it was assumed that some alien race was using zero-point energy and lost control.
ZPE is also a potential energy source of interest to independent researchers outside of mainstream research entities, such as the late Eugene Mallove, and figures into discussions on radio programs such as Coast to Coast AM.
LORENTZ INVARIANCE OF THE SPECTRUM
That the spectrum of zero-point radiation has a frequency-cubed dependence is of great significance. That is the only kind of spectrum that has the property of being Lorentz invariant. The effect of motion is to Doppler shift detected electromagnetic radiation, but a frequency-cubed spectrum has the property that up- and down-shifting of the radiation is exactly compensated, i.e. there is as much radiation Doppler shifted into a given frequency interval as there is shifted out by uniform motion.
A remarkably different phenomenon occurs when accelerating through zero-point radiation. The zero-point radiation acts upon an accelerating detector as if the detector were immersed in a thermal spectrum, even though heat and temperature are not involved. The perceived ''temperature'' is directly proportional to the acceleration.
CASIMIR EFFECT
In 1947 Hendrik Casimir, once an assistant of Pauli, was working in applied industrial research at the Philips Laboratory in the Netherlands along with physicist J. T. G. Overbeek. They were analyzing the theory of van der Waals forces when Casimir had the opportunity to discuss ideas with Niels Bohr on a walk. According to Casimir, Bohr ''mumbled something about zero-point energy'' being relevant. This led Casimir to an analysis of zero-point energy effects in the related problem of forces between perfectly conducting parallel plates.
The cavity between such plates cannot sustain all modes of the electromagnetic field. In particular wavelengths comparable to the plate separation and longer are excluded from the region between the plates. This fact leads to the situation that there is a zero-point radiation overpressure outside the plates which acts to push the plates together. This can be considered analogous to radiation pressure (radiation pressure from the Sun pushes comet tails away from the comet nucleus), and the resulting effect is now called the Casimir force. It has the property of increasing in strength with the inverse fourth power of the plate separation. The force ceases when elements of the plates come into contact, the surface smoothness of the plates being a limiting factor, or when the plates are so close that the corresponding zero-point radiation wavelengths no longer ''see'' a perfectly conducting surface. The actual noncontinuous nature of the plates, as opposed to the true surface and molecular nature of the materials, becomes an important factor for very short distances.
The Casimir force was not measured to high precision until the mid 1990s, when measurements by S. Lamoreux at the University of Washington verified Casimir's predictions to within five percent in the size range of a few microns. It has since been verified even more precisely, by U. Mohideen at the University of California at Riverside, again in agreement with Casimir's formula. Moreover the Casimir force (also called Casimir effect) has become relevant to micro-electro-mechanical structures in which it is both a problem (termed ''stiction'') and a possible mechanism for control.
The Casimir force is widely cited as evidence that underlying the universe there must be a sea of real zero-point energy. This argument follows from Casimir's analysis and prediction. It is not necessarily true, however. It is perfectly possible to explain the Casimir effect by taking into account the quantum-induced motions of atoms in each plate and examining the retarded potential interactions of atoms in one plate with those in the other.
FORWARD THOUGHT EXPERIMENT
There is growing interest concerning the possibility of tapping zero-point energy and many claims exist of ''over unity devices'' (gadgets yielding a greater output than the required input for operation) driven by zero-point energy. In spite of the dubious nature of these claims (to date no such device has passed a rigorous, objective test), the concept of converting some amount of zero-point energy to usable energy cannot be ruled out in principle. Zero-point energy is not a thermal reservoir, and therefore does not suffer from the thermodynamic injunction against extracting energy from a lower temperature reservoir.
In 1993 Cole and Puthoff published a thermodynamic analysis, ''Extracting energy and heat from the vacuum'' (see below), in which they concluded that ''extracting energy and heat from electromagnetic zero-point radiation via the use of the Casimir force'' is in principle possible without violating the laws of thermodynamics.
A thought experiment for a device that readily demonstrates how the Casimir force could be put to use in principle was proposed by physicist Robert Forward in 1984 (see below). A ''vacuum fluctuation battery'' could be constructed consisting of stacked conducting plates. Applying the same polarity charge to all the plates would yield a repulsive force between plates, thereby opposing the Casimir force which is acting to push the plates together. Adjusting the electrostatic force so as to permit the Casimir force to dominate will result in adding energy to the electric field between the plates, thereby converting zero-point energy to electric energy.
One can imagine an even simpler microdevice in which the Casimir force pushes two plates together thereby engaging some kind of lever which does work.
There is no practical application in these examples since ideally it would take just as much energy, and in practice somewhat more energy owing to frictional and other losses, to separate the plates for a second cycle. Nevertheless, this would demonstrate the concept of conversion of zero-point energy in principle if the Casimir effect attribution to zero-point energy is correct (which is debatable).
DARK ENERGY
A major discovery in astrophysics in the late 1990s was the finding from type Ia supernovae redshift-luminosity observations that the expansion of the universe is accelerating. This led to the concept of dark energy, which is in effect a resurrection of Einstein's cosmological constant. (The universe now appears to consist of about 70 percent dark energy, 25 percent dark matter and five percent ordinary matter.) Zero-point energy has the desired property of driving an accelerated expansion, and thus having the requisite properties of dark energy, but to an absurdly greater degree than required, i.e. 120 orders of magnitude.

Zero-point energy behaves differently. For ordinary radiation, the ratio of pressure to energy density is w=1/3c2, which is customarily expressed in units whereby c=1, and thus the ratio is expressed as w=+1/3. But for zero-point energy the ratio is w=-1. This is owing to the circumstance that the zero-point energy density is assumed to be constant: no matter how much the universe expands it does not become diluted, but instead more zero-point energy is assumed to be created out of nothing.
A further peculiarity is that a ratio of w=-1 implies that the zero-point energy exerts a negative pressure which, counter-intuitively, leads to an expansion of space-time.
Thus zero-point energy would appear to be identical with the mysterious dark energy, but unfortunately if the energy spectrum does continue up to the Planck frequency, there may be 120 orders of magnitude more energy per cubic centimeter than the observations of cosmic acceleration permit. Indeed, this amount of zero-point energy, interpreted this way, would have accelerated the universe into oblivion in microseconds.
Recent work by Christian Beck at the University of London and Michael Mackey at McGill University may have resolved the 120 order of magnitude problem. In that case dark energy is nothing other than zero-point energy. In Measureability of vacuum fluctuations and dark energy and Electromagnetic dark energy they propose that a phase transition occurs so that zero-point photons below a frequency of about 1.7 THz are gravitationally active whereas above that they are not. If this is the case, then the dark energy problem is solved: dark energy is the low frequency gravitationally active component of zero-point energy.
Zero-point photons continue to exist above the 1.7 THz phase transition, consistent with measurable QED effects such as the Casimir effect, the Lamb shift, etc. The proposed phase transition should be testable in the near future when the Koch et al. experiment is extended from 0.6 Tz to the proposed cutoff.
STOCHASTIC ELECTRODYNAMICS THEORY

In the 1960s British physicist Trevor Marshall and, separately, American Timothy Boyer were two of the principal investigators who essentially took up the abandoned approach and pushed it much farther by asking the question: which quantum phenomena might be explained using solely classical physics plus an assumed classical representation of a zero-point field with zero-point energy? For the contribution of other researchers, see the book "The Quantum Dice" by de la Pena and Cetto (below). This became the discipline known as stochastic electrodynamics (SED, earlier sometimes referred to as random electrodynamics). In the SED representation the zero-point field is taken to be a given, and is treated as an ensemble of ordinary electromagnetic plane waves having an energy 1/2 hf in each and every mode. There is no quantum physics involved.

Two noteworthy successes of SED are its derivation of the Planck blackbody function without assuming quantization and its suggestion that the Bohr orbit of hydrogen could arise without a quantum law. In the latter case, the ground state electron is assumed to emit Larmor radiation which causes it to spiral inward, but this does not lead to collapse of the orbit because the electron also absorbs zero-point energy. The calculation of the absorption was done by Boyer and later by Puthoff by treating the electron as undergoing harmonic oscillation rather than true motion in a Coulomb potential. This is a weakness in the analysis but nonetheless it is striking that the Larmor emission and harmonic-oscillator-type absorption prove to be in balance exactly at the Bohr radius. The fact that the orbital angular momentum is zero in the quantum ground state is mirrored in the SED orbiting-electron interpretation by random changes in the orbital plane (due to the zero-point fluctuations) yielding a time averaged zero net angular momentum.

Recent simulations by Cole have successfully modeled the electron motion in the Coulomb potential of a hydrogen atom and have thereby replicated the electron probability density predicted by the Schroedinger wave function. In the SED case, the electron in a Coulomb field is jostled by its emission and absorption to a range of radial distances which reproduce the Schroedinger probability. This is an intriguing extension of the earlier result, but problems still remain such as the need to cut off the particle-field interactions to avoid autoionization, i.e. a single very high frequency, hence very energetic, zero-point fluctuation could free the electron.
The representation of the zero-point field as an ensemble of plane waves each with an energy of precisely 1/2 hf in all possible directions and random phases was modified in 1995 by Ibison and Haisch. They added a parameter having a random distribution of energies with 1/2 hf as the mean, thereby yielding a closer formal correspondence with the quantum behaviour.
ZITTERBEWEGUNG
Schroedinger was apparently the first to note that solving the Dirac equation for the motion of the electron resulted in a necessary component that could be interpreted as random, speed-of-light fluctuations of a point-like particle. He dubbed this motion ''zitterbewegung'' (German for ''jitter motion''). In SED theory, the phenomenon of zitterbewegung is caused by the electromagnetic zero-point fluctuations.
Several things are interesting about zitterbewegung. First, since the fluctuations occur at the speed of light, then at this level the electron would have to be massless, mass arising at some higher level of motion. Secondly, the fluctuations smear out the average position over a volume the Compton radius in size, which suggests a physical interpretation of the wave function and the associated probability density. (Scattering experiments indicate that the electron is far smaller than its Compton size, indeed point-like for all we know.) Thirdly, simulations that have recently been done show that if such a massless, fluctuating point particle is accelerated in an electric field, the zitterbewegung acquires a helical motion suggestive of spin. The possible association of zitterbewegung with spin has been made by a number of authors over the years such as Barut and Zanghi, Hestenes, Huang, Weisskopf, etc.
Zitterbewegung thus suggests possibly deep connections between zero-point energy and the mass-energy relationship of matter and with the quantum properties of particles.
SPECULATIVE CONNECTION TO INERTIAL AND GRAVITATIONAL MASS
Click here for a new popular-level overview on this topic by Marcus Chown.
The connection in SED theory between zitterbewegung and the zero-point fluctuations have led to speculative investigations of a possible mass-generating role as an alternative to the Higgs field. The Higgs field was first proposed in 1964 and is still a key element of the Standard Model of particle physics; it is needed to confer the property of mass on the fundamental particles. In the theory, all particles are intrinsically massless until acted upon by the Higgs field. The quantum of the Higgs field is the Higgs boson. Attempts to detect the Higgs boson, and therefore to verify the Higgs field as the mass-generating mechanism of the Standard Model, have been unsuccessful. The current best hope is on the forthcoming Large Hadron Collider at CERN scheduled to go on line in May 2008.
Even if the Higgs field is experimentally discovered, however, that will still not explain the origin of inertial mass of ordinary matter. The Higgs field applies only to the electro-weak sector of the Standard Model. The mass of ordinary matter is overwhelmingly due to the protons and neutrons in the nuclei of atoms. Protons and neutrons are comprised of the two lightest quarks: the up and down quarks. The masses of their constituent quarks (approx. 0.005 and 0.010 GeV/c2 for the up and down quarks respectively) comprise only about one percent of the masses of the protons and neutrons (0.938 and 0.940 GeV/c2 respectively). The remainder of the mass would have to be due to the gluon fields and strong interaction energies. The quark masses, the gluon fields and other strong interaction energies would not be affected by a Higgs field. The origin of inertial mass of ordinary matter is thus a wide open question.
SED studies published in the 1990s showed that a massless point-charge oscillator accelerating through the zero-point field will experience a Lorentz force (from the magnetic components of the zero-point fluctuations) that turns out to be directly proportional to acceleration, allowing the derivation of the fundamental F=ma relationship of mechanics from electrodynamics. This points to the electromagnetic quantum vacuum as the origin of forces which appear as inertial mass. The same result can be derived by considering the transformation properties of the electromagnetic field when experienced in an accelerating coordinate system, and in that case the proper four-vector relativistic equation of motion can be derived. A recent study showed that such a zero-point field based mass-generating approach would explain the origin of Einstein's principle of equivalence. These as yet still speculative concepts suggest that zero-point energy may be involved in some of the most fundamental properties of matter. It should be noted that this unorthodox approach to mass based upon electrodynamics is not taken very seriously by the mainstream physics community, whose efforts remain focussed on superstring- and M-theory.
IS IT POSSIBLE TO TAP ZERO POINT ENERGY?
As to whether zero-point energy may become a source of usable energy, this is considered extremely unlikely by most physicists, and none of the claimed devices are taken seriously by the mainstream science community. Nevertheless, SED interpretation of the Bohr orbit (above) does suggest a way whereby energy might be extracted. Based upon this a patent has been issued and experiments have been underway at the University of Colorado
Нема коментара:
Постави коментар